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Recall Newton methods
� Given                                                           and iterate      

we wish to pick          such that

where
� Neglecting higher-order terms, we get

where                                   is the Jacobian matrix, 
generally large, sparse, and ill-conditioned for PDEs

� In practice, require
� In practice, set                                     where      is 

selected to minimize         
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Nonlinear Robustness
� Problem:

� attempts to handle nonlinear problems with nonlinear implicit 
methods often encounter stagnation failure of Newton away 
from the neighborhood of the desired root

� Algebraic solutions:
� linesearch and trust-region methods
� “forcing terms” 

� Physics-based solutions:
� mesh sequencing
� continuation (homotopy) methods for directly addressing this 

through the physics, e.g., pseudo-transient continuation
� transform system to be solved so that neglected curvature 

terms of multivariate Taylor expansion truncated for 
Newton’s method are smaller (nonlinear Schwarz)
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Standard robustness features
� PETSc contains in its nonlinear solver library some 

standard algebraic robustness devices for nonlinear 
rootfinding from Dennis & Schnabel, 1983

� Line search
� try to ensure that F(u) is strictly monotonically decreasing
� parameterize reduction of |F(u + λδu)| along Newton step δu
� solve scalar minimization problem for λ

� Trust region
� define a region about the current iterate within which we trust a 

model of the residual
� approximately minimize the model of the residual within the region 

(again with low-dimensional parameterization of convex combination 
of descent direction and Newton direction)

� shrink or expand trust region according to history
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Standard robustness features
� PETSc contains in its nonlinear solver library 

standard algebraic robustness devices for nonlinear 
rootfinding from Eisenstat & Walker (1996)
� EW’96 contains three heuristics for the accuracy with which a 

Newton step should be solved
� relies intrinsically on iterative solution of the Newton 

correction equation
� tolerance for linear residual (“forcing factor”) computed based 

on norms easily obtained as by-products of the rootfinding
computation – little additional expense

� tolerance tightens dynamically as residual norm decreases 
during the computation

� “oversolving” not only wastes execution time, but may be less 
robust, since early Newton directions are not reliable
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Mesh sequencing
• Technique for robustifying nonlinear rootfinding for 

problems based on continuum approximation
• Relies on several levels of refinement from coarse to fine
• Theory exists showing (for nonlinear elliptic problems) 

that, asymptotically, the root on a coarser mesh, 
appropriately interpolated onto a finer mesh, lies in the 
domain of convergence of Newton’s method on the finer 
grid
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Time-implicit Newton-Krylov-Schwarz
For  accommodation of unsteady problems, and nonlinear robustness in 

steady ones, NKS iteration is wrapped in time-stepping:
for (l = 0; l < n_time; l++) {

select time step
for (k = 0; k < n_Newton; k++) {

compute nonlinear residual and Jacobian
for (j = 0; j < n_Krylov; j++) {

forall (i = 0; i < n_Precon ; i++) {
solve subdomain problems concurrently

} // End of loop over subdomains
perform Jacobian-vector product
enforce Krylov basis conditions
update optimal coefficients 
check linear convergence

} // End of linear solver
perform DAXPY update 
check nonlinear convergence

} // End of nonlinear loop
} // End of time-step loop

NKS 
loop

Pseudo-
time 
loop
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Pseudo-transient continuation (ΨΨΨΨtc)
� Solve F(u)=0 through a series of problems 

derived from method of lines model

� is advanced from              to ∞∞∞∞ as               so 
that        approaches the root 

� With initial iterate for       as        , the first 
Newton correction for (*) is

� Note that ||F(u)|| can climb hills during ΨΨΨΨtc
� Can subcycle inside physical timestepping
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Algorithmic tuning - continuation parameters
� “Switched Evolution-Relaxation” (SER) heuristic

� Analysis in SIAM papers by Kelley & Keyes (1999 for 
parabolized, 2002 for mixed elliptic/parabolized)

� Parameters of interest:
� initial CFL number
� exponent in the Power Law

� = 1 normally
� > 1 for first-order discretization (1.5)
� < 1 at outset of second-order discretization (0.75) 

� switch-over ratio between first-order and second-order
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Nonlinear Schwarz preconditioning
� Nonlinear Schwarz has Newton both inside and 

outside and is fundamentally Jacobian-free
� It replaces                with a new nonlinear system 

possessing the same root, 
� Define a correction            to the     partition (e.g., 

subdomain) of the solution vector by solving the 
following local nonlinear system:

where                  is nonzero only in the components 
of the     partition

� Then sum the corrections: 
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Nonlinear Schwarz – picture
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Nonlinear Schwarz – picture
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Nonlinear Schwarz – picture

1
1

1
1

0 0

1
1

1
1

0 0

u

F(u)

Fi’(ui)

Ri

Rj

Riu

RjF

RiF

Rju

δiu+δju



ACTS Workshop, 6 August 2003

Nonlinear Schwarz, cont.
� It is simple to prove that if the Jacobian of  F(u) is 

nonsingular in a neighborhood of the desired root 
then                   and                have the same unique 
root

� To lead to a Jacobian-free Newton-Krylov algorithm 
we need to be able to evaluate for any                :
� The residual 
� The Jacobian-vector product

� Remarkably, (Cai-Keyes, 2000) it can be shown that 

where                   and 
� All required actions are available in terms of            !
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Nonlinear Schwarz, cont.
Discussion:
� After the linear version of additive Schwarz was 

invented, it was realized that it was algebraically in 
the same class of methods as additive multigrid, 
though linear MG is usually done multiplicatively

� After nonlinear Schwarz was invented, it was 
realized that it was algebraically in the same class of 
methods as nonlinear multigrid (full approximation 
scheme MG), though nonlinear multigrid is usually 
done multiplicatively
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Driven cavity in velocity-vorticity coords
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Experimental example of nonlinear Schwarz

Newton’s method Additive Schwarz Preconditioned Inexact Newton
(ASPIN)

Difficulty at 
critical Re

Stagnation 
beyond 

critical Re

Convergence 
for all Re
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Jacobian-free Newton-Krylov
� In the Jacobian-Free Newton-Krylov (JFNK) method, a 

Krylov method solves the linear Newton correction 
equation, requiring Jacobian-vector products

� These are approximated by the Fréchet derivatives

(where       is chosen with a fine balance between 
approximation and floating point rounding error) or 
automatic differentiation, so that the actual Jacobian 
elements are never explicitly needed

� One builds the Krylov space on a true F’(u) (to within 
numerical approximation)
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Recall idea of preconditioning
� Krylov iteration is expensive in memory and in 

function evaluations, so k must be kept small in 
practice, through preconditioning the Jacobian with an 
approximate inverse, so that the product matrix has 
low condition number in

� Given the ability to apply the action of           to a 
vector, preconditioning can be done on either the left, 
as above, or the right, as in, e.g., for matrix-free:
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Philosophy of Jacobian-free NK
� To evaluate the linear residual, we use the true F’(u) , giving 

a true Newton step and asymptotic quadratic Newton 
convergence

� To precondition the linear residual, we do anything convenient 
that uses understanding of the dominant physics/mathematics 
in the system and respects the limitations of the parallel 
computer architecture and the cost of various operations:
� Jacobian of lower-order discretization
� Jacobian with “lagged” values for expensive terms 
� Jacobian stored in lower precision 
� Jacobian blocks decomposed for parallelism
� Jacobian of related discretization 
� operator-split Jacobians
� physics-based preconditioning
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Using Jacobian of lower order discretization
� Orszag popularized the use of linear finite element 

discretizations as preconditioners for high-order spectral 
element discretizations in the 1970s; both approach the 
same continuous operator 

� It is common in CFD to employ first-order upwinded
convective operators as approximate inversions for 
higher-order operators:
� better factorization stability
� smaller matrix bandwidth and complexity

� With Jacobian-free NK, we can have the best of both 
worlds – a stable factorization/cheap solve and a true 
Jacobian step
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Using Jacobian with lagged terms
� Newton-chord methods (e.g., papers by Smooke et al.) “freeze”

the Jacobian matrices:
� saves Jacobian evaluation and factorization, which can be up to 90% 

of the running time of the code in some apps
� however, nonlinear convergence degrades to linear rate

� In Jacobian-free NK, we can “freeze” some or all of the terms in 
the Jacobian preconditioner, while always accessing the action of 
the true Jacobian for the Krylov matrix-vector multiply:
� still saves Jacobian work
� maintains asymptotically quadratic rate for nonlinear convergence

� See (Knoll-Keyes ’03) for example with coupled edge plasma and 
Navier-Stokes, showing five-fold improvement over full Newton 
with constantly refreshed Jacobian on LHS, versus JFNK with 
preconditioner refreshed once each ten timesteps
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Using Jacobian with lower precision elements
� Memory bandwidth is the critical architectural 

parameter for sparse linear algebra computations
� Storing the preconditioner elements in single precision 

effectively doubles memory bandwidth (and potentially 
halves runtime) for this critical phase

� We still form the Jacobian-vector product with full 
precision and “zero-pad” the preconditioner elements 
back to full length in the arithmetic unit, so the 
numerical quality of the Krylov subspace does not 
degrade
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Memory BW bottleneck revealed 
via precision reduction

106s122s16s31s120
181s205s34s60s64
331s373s67s117s32
657s746s136s223s16

SingleDoubleSingleDouble 
OverallLinear Solve

Computational Phase
Number of 
Processors

Execution times for unstructured NKS Euler Simulation on Origin 2000:  
double precision matrices versus single precision preconditioner

Note that times are nearly halved, along with precision, for the BW-limited linear solve 
phase, indicating that the BW can be at least doubled before hitting the next bottleneck!
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Using Jacobian of related discretization
� To precondition a variable coefficient operator, such 

as ∇·(α∇ •) , use          , based on a constant 
coefficient average

� Brown & Saad (1980) showed that, because of the 
availability of fast solvers, it may even be acceptable 
to use             to precondition something like
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Operator-split preconditioning
� Subcomponents of a PDE operator often have special 

structure that can be exploited if they are treated 
separately

� Algebraically, this is just a generalization of Schwarz, by 
term instead of by subdomain 

� Suppose                                and a preconditioner is to be 
constructed, where                 and                   are each 
“easy” to invert

� Form a preconditioned vector from     as follows: 

� Equivalent to replacing      with
� First-order splitting error, yet often used as a solver!

RSIJ ++= −1τ
SI τ+ RI τ+

u

J SRRSI ττ +++−1

uSIRI 111 )()( −−− ++ ττ



ACTS Workshop, 6 August 2003

Operator-split preconditioning, cont.
� Suppose S is convection-diffusion and R is reaction, 

among a collection of fields stored as gridfunctions
� On a small regular 2D grid with a five-point 

stencil:

� R is trivially invertible in block diagonal form
� S is invertible with one multilevel solve per field

J = S + R
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� Preconditioners assembled from just the “strong” elements 
of the Jacobian, alternating the source term and the 
diffusion term operators, are competitive in convergence 
rates with block-ILU on the Jacobian
� particularly, since the decoupled scalar diffusion systems are 

amenable to simple multigrid treatment – not as trivial for the coupled 
system

� The decoupled preconditioners store many fewer elements 
and significantly reduce memory bandwidth requirements 
and are expected to be much faster per iteration when 
carefully implemented

� See “alternative block factorization” by Bank et al.; 
incorporated into SciDAC TSI solver by D’Azevedo

Operator-split preconditioning, cont.
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Physics-based preconditioning
� In Newton iteration, one seeks to obtain a correction 

(“delta”) to solution, by inverting the Jacobian 
matrix on (the negative of) the nonlinear residual:

� A typical operator-split code also derives a “delta” to 
the solution, by some implicitly defined means, 
through a series of implicit and explicit substeps

� This implicitly defined mapping from residual to 
“delta” is a natural preconditioner

� Software must accommodate this!
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Physics-based Preconditioning
� We consider a standard “dynamical 

core,” the shallow-water wave 
splitting algorithm, as a solver

� Leaves a first-order in time splitting 
error

� In the Jacobian-free Newton-Krylov 
framework, this solver, which maps a 
residual into a correction, can be 
regarded as a preconditioner

� The true Jacobian is never formed yet 
the time-implicit nonlinear residual at 
each time step can be made as small as 
needed for nonlinear consistency in 
long time integrations



ACTS Workshop, 6 August 2003

Example: shallow water equations
� Continuity (*)

� Momentum (**)

� These equations admit a fast gravity wave, as can be 
seen by cross differentiating, e.g., (*) by t and (**) by 
x, and subtracting:
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1D shallow water equations, cont.

� Wave equation for geopotential:

� Gravity wave speed φg

� Typically                        , but stability restrictions 
would require timesteps based on the Courant-
Friedrichs-Levy (CFL) criterion for the fastest wave, 
for an explicit method

� One can solve fully implicitly, or one can filter out the 
gravity wave by solving semi-implicitly
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1D shallow water equations, cont.
� Continuity (*)

� Momentum (**)
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� Solving (**) for                   and substituting into (*),   

where
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1D shallow water equations, cont.
� After the parabolic equation is spatially discretized and 

solved for          , then                   can be found from  
n

n
nn S

x
gu +

∂
∂−=

+
+

1
1)( φφτφ

� One scalar parabolic solve and one scalar explicit update
replace an implicit hyperbolic system

� This semi-implicit operator splitting is foundational to 
multiple scales problems in geophysical modeling

� Similar tricks are employed in aerodynamics (sound 
waves), MHD (multiple Alfvén waves), reacting flows 
(fast kinetics), etc.

� Temporal truncation error remains due to the lagging 
of the advection in (**)

1+nφ 1)( +nu φ

To be dealt with shortly
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1D Shallow water preconditioning
� Define continuity residual for each timestep:

� Define momentum residual for each timestep:
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� Momentum delta form (**):
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1D Shallow water preconditioning, cont.
� Solving (**) for                   and substituting into (*),   

� After this parabolic equation is solved for δφ , we have

� This completes the application of the preconditioner to one 
Newton-Krylov iteration at one timestep

� Of course, the parabolic solve need not be done exactly; 
one sweep of multigrid can be used

� See paper by Mousseau et al. (2002) for impressive results 
for longtime weather integration
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Physics-based preconditioning update

� So far, physics-based preconditioning has been 
applied to several codes at Los Alamos, in an effort 
led by D. Knoll

� Summarized in new J. Comp. Phys. paper by Knoll & 
Keyes (2003)

� PETSc’s “shell preconditioner” is ideal for inserting 
physics-based preconditioners, and PETSc’s solvers 
underneath are ideal building blocks
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SciDAC philosophy on PDEs
� Solution of a system of PDEs is rarely a goal in itself 

� PDEs are solved to derive various outputs from specified inputs
� actual goal is characterization of a response surface or a design 

or control strategy
� together with analysis, sensitivities and stability are often 

desired

⇒Tools for PDE solution should also support these 
related desires
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PDE-constrained optimization

� PDE-constrained optimization: a relatively new horizon
� … for large-scale PDE solution

� next step after reducing to practice parallel implicit solvers for coupled 
systems of (steady-state) PDEs

� now “routine” to solve systems of PDEs with millions of DOFs on thousands 
of processors

� … for constrained optimization
� complexity of a single projection to the constraint manifold for million-DOF 

PDE is too expensive for an inner loop of traditional RSQP method
� must devise new “all-at-once” algorithms that seek “exact” feasibility only 

at optimality

� Our approach starts from the iterative PDE solver side
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Optimizers
� Many simulations are properly posed as 

optimization problems, but this may not 
always be recognized

� Unconstrained or bound-constrained 
applications use TAO

� PDE-constrained problems use Veltisto
� Both are built on PETSc solvers (and 

Hypre preconditioners)
� TAO makes heavy use of AD, freeing 

user from much coding
� Veltisto, based on RSQP, switches as 

soon as possible to an “all-at-once” 
method and minimizes the number of 
PDE solution “work units”
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Recent optimization progress (recap)

� Unconstrained or bound-
constrained optimization

� TAO-PETSc used in quantum 
chemistry energy minimization

� PDE-constrained optimization
� Veltisto-PETSc used in flow control 

application, to straighten out wingtip 
vortex by wing surface blowing and 
sunction; performs full optimization 
in the time of just five N-S solves

� “Best technical paper” at SC2002 
went to our SciDAC colleagues at 
CMU:

� Inverse wave propagation employed 
to infer hidden geometry

4000 controls

128 procs

2 million controls

256 procs
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Constrained optimization w/Lagrangian
� Consider Newton’s method for solving the nonlinear 

rootfinding problem derived from the necessary 
conditions  for constrained optimization

� Constraint
� Objective
� Lagrangian
� Form the gradient of the Lagrangian with respect to 

each of x, u, and λ:
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Newton on first-order conditions
� Equality constrained optimization leads to the KKT 

system for states x , designs u , and multipliers λ
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� Then

� Newton Reduced SQP solves the Schur complement 
system  H δu = g , where H is the reduced Hessian
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RSQP when constraints are PDEs
� Problems

� is the Jacobian of a PDE ⇒⇒⇒⇒ huge!
� involve Hessians of objective and constraints ⇒⇒⇒⇒ second 

derivatives and huge

� H is unreasonable to form, store, or invert

xJ
αβW

� Proposed solution: Schwarz inside Schur!
� form approximate inverse action of state Jacobian and its 

transpose in parallel by Schwarz/multilevel methods 
� form forward action of Hessians by automatic differentiation; 

exact action needed only on vectors (JFNK)
� do not eliminate exactly; use Schur preconditioning on full 

system
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Schur preconditioning from DD theory
� Given a partition

� Condense:

� Let  M be a good preconditioner for  S
� Then                                       is a preconditioner for A

� Moreover, solves with       may be approximate if all 
degrees of freedom are retained (e.g., a single V-cycle)

� Algebraic analogy from constrained optimization: “i” 
is state-like, “ΓΓΓΓ” is decision-like
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PDE-constrained Optimization

c/o G. Biros and O. Ghattas

Lagrange-Newton-Krylov-Schur implemented in Veltisto/PETSc

wing tip vortices, no control (l); optimal control (r)wing tip vortices, no control (l); optimal control (r)

optimal boundary controls shown as velocity vectorsoptimal boundary controls shown as velocity vectors

� Optimal control of laminar viscous flow
� optimization variables are surface 

suction/injection 
� objective is minimum drag
� 700,000 states; 4,000 controls
� 128 Cray T3E processors
� ~5 hrs for optimal solution (~1 hr for analysis)

www.cs.nyu.edu/~biros/veltisto/
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PETSc codeUser code

Nonlinear PDE solution w/PETSc

AD-generated code

Application
Initialization

Function
Evaluation

Jacobian
Evaluation

Post-
Processing

PC KSP
PETSc

Linear Solvers (SLES)

Nonlinear Solvers (SNES)

Solve
F(u) = 0

Application Driver

• Automatic Differentiation (AD): a technology for automatically augmenting 
computer programs, including arbitrarily complex simulations, with statements for 
the computation of derivatives, also known as sensitivities.
• AD Collaborators: P. Hovland and B. Norris (http://www.mcs.anl.gov/autodiff)

(c/o Lois Curfman McInnes, ANL)
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Application
Initialization

Post-
Processing

PETSc Solve
F(u) = 0

Zoom on user routine structure

PETSc codeUser code AD-generated code

Nonlinear Solvers (SNES)

Main Routine

Parallel Jacobian
assembly

Global-to-local 
scatter of ghost  values

Seed matrix
initialization

Local Jacobian
computation

Global-to-local 
scatter of ghost  values

Parallel function
assembly

Local Function 
computation

(c/o Lois Curfman McInnes, ANL)
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Using AD with PETSc:
Creation of AD Jacobian from function

Global-to-local 
scatter of ghost  values

Parallel function
assembly

Local Function 
computation

Parallel Jacobian
assembly

Global-to-local 
scatter of ghost  values

Local Jacobian
computation

Local Function 
computation

ADIFOR or ADIC

Local Jacobian
computation

Script file

Seed matrix 
initialization

• Fully automated for structured meshes
• Currently manual setup for unstructured    
meshes; can be automated

Current status:

(c/o Lois Curfman McInnes, ANL)
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Parameter identification model

� Nonlinear diffusion PDE BVP:
� Parameters to be identified: α(x), β
� Dirichlet conditions in x, homogeneous Neumann 

in all other dimensions (so solution has 1D 
character but arbitrarily large parallel test cases 
can be set up)

� Objective:                                where          is 
synthetic data specified from a priori solution 
with given α(x) piecewise constant, β=2.5 (Brisk-
Spitzer approximation for radiation diffusion)

2||)()(|| xTxT −=Φ )(xT

0))(( =∇•∇ TTx βα
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Implementation
� PETSc’s “shell preconditioner” functionality used to 

build the block factored KKT preconditioner recursively
� Solution method: LNKS with Schwarz preconditioning 

of the PDE Jacobian blocks, ILU on Schwarz 
subdomains

� MPI-based parallelization
� ADIC generates Jacobian blocks from user functions 
� Illustrative results (next slide) fix αααα(x) and identify 

exponent ββββ only, while uniform mesh density is refined in 
2D; have also identified αααα(x) throughout full domain

� Newton-like, mesh-independent convergence for overall 
residual
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Illustrative results

2-norm of residual of full system 
F(T(x),ββββ,λλλλ(x)) vs. iteration

|ββββ -ββββ*| vs. iteration

[solid: 25×25 2Dmesh, dash: 50×50, dot-dash: 100×100, dot-dot-dash:200×200]
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Closing
� TOPS is providing interoperable combinations of 

the tools in the ACTS Toolkit described so far in 
the program (PETSc, TAO, SuperLU, 
Hypre) and others

� However, TOPS does not pretend that the best 
“solutions” will be prepackaged and available 
across simple abstract interfaces

� Rather, TOPS hopes to provide multilayered 
access to solver building blocks that can be 
assembled by users to build more sophisticated 
solvers
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“Knowing what is big and what is small is more important than 
being able to solve partial differential equations.” – S. Ulam

http://www.tops-scidac.org


